
CS 4100: Introduction to AI

Wayne Snyder
Northeastern University

Lecture 14: K-Means concluded; Survey of Clustering; PCA

Lloyd’s Algorithm for K-Means

Repeat until some termination criterion is met:
1. Randomly* choose the k centroids { c1, ..., ck };

2. For each 1 ≤ 𝑗 ≤ 𝑘 set the cluster Xj to be the set of points in X
which are closest to the center cj;

3. For each j, update the value of cj to be the mean of the vectors in Xj.

* NOTE: This is a Hill-Climbing (search) algorithm, where the cost is
the squared intra-cluster distances:

Unsupervised Learning: Clustering with K-Means

Evaluating K-Means: What should K be????
The main problem is that the cost (sum of squared intra-cluster
distances) decreases as number of clusters gets smaller! Which
is the best one?

Unsupervised Learning: Clustering with K-Means

How to choose the right K??

1. Iterate through different values of k (elbow method)
2. Use empirical / domain-specific knowledge: Example: Is there a known
approximate distribution of the data? (K-means is good for spherical gaussians)
3. Metric for evaluating a clustering output...

Unsupervised Learning: Clustering with K-Means

Metrics for evaluating clustering results.

Recall our goal: Find a set of centroids such that
1. Similar data points are in the same cluster; and
2. Dissimilar data points are in differenet clusters.

K-Means does a good job on (1) because the cost function tells
us that intra-cluster distances will be small overall.

But what about the intra-cluster distance?

Are the cluster we created far away from each other? How far, and
relative to what?

The Silhouette Score is a common way to analyse this....

Unsupervised Learning: Clustering with K-Means

Unsupervised Learning: Clustering with K-Means

Silhouette Score

What does it mean for (b-a) to be 0? To be large? To be negative?

Should we compare (b-a) to be some other value, in order to get a sense of how
representative that average value is overall?

The Silhouette Score uses (b-a) / max(a,b).

Unsupervised Learning: Clustering with K-Means

For each data point i:
ai = the mean distance from point i to every other point in its cluster; and

bi = the smallest mean distance from point i to a point in a different cluster.

Unsupervised Learning: Clustering with K-Means
For each data point i:

ai = the mean distance from point i to every other point in its cluster; and

bi = the smallest mean distance from point i to a point in a different cluster.

The Silhouette Score for each point i is then:

si = (bi – ai) / max(ai, bi).

We return the mean of all si as a metric for goodness-of-fit for the clustering.

Unsupervised Learning: Clustering with K-Means
For each data point i:

ai = the mean distance from point i to every other point in its cluster; and

bi = the smallest mean distance from point i to a point in a different cluster.

The Silhouette Score for each point i is then:

si = (bi – ai) / max(ai, bi).

We return the mean of all si as a metric for goodness-of-fit for the clustering.

Unsupervised Learning: Clustering with K-Means
Comparing Within-Cluster-Sum-Of-Squares and Silhouette Scores on our example...

Unsupervised Learning: Clustering with K-Means
Comparing Within-Cluster-Sum-Of-Squares and Silhouette Scores on our example...

Unsupervised Learning: Clustering with K-Means
Comparing Within-Cluster-Sum-Of-Squares and Silhouette Scores on our example...

Unsupervised Learning: Clustering with K-Means
Silhouette Scores are often combined with a histogram of the scores of each point in
each cluster:

Unsupervised Learning: Clustering with K-Means
Silhouette Scores are often combined with a histogram of the scores of each point in
each cluster:

Unsupervised Learning: Clustering with K-Means
Silhouette Scores are often combined with a histogram of the scores of each point in
each cluster:

Unsupervised Learning: Clustering with K-Means
Silhouette Scores are often combined with a histogram of the scores of each point in
each cluster:

Limitations of K-means: Clusters of different sizes

x

Unsupervised Learning: Clustering

Limitations of K-Means: Different Cluster Densities

x

Unsupervised Learning: Clustering

Limitations of K-Means: non-spherical clusters

x

Unsupervised Learning: Clustering

Limitations of K-Means: Outliers are a problem!

Unsupervised Learning: Clustering

Survey of Clustering Algorithms

There are MANY different clustering algorithms, with different advantages and
disadvantages... Here is a representative survey:

K-Means++

The problem with Lloyd's Algorithm is that choosing random starting points does
not always lead to a good solution!

The naive solution is to run the algorithm many times with different random
initializations, but the "fake it until you make it" approach is not optimal!

Typical problem with random initialization: Starting
with initialization points too close to each other.

Improving K-Means Clustering: K-Means++

K-Means: Farthest-First Traversal (FFT) Initialization:

Pick the first center randomly; then choose the point farthest away from existing
centers for the remainder.

Improving K-Means Clustering: K-Means++

K-Means: Farthest-First Traversal with Outliers

Improving K-Means Clustering: K-Means++

Improving K-Means Clustering: K-Means++

K-Means++ combines the two approaches (random vs FFT):

1. Start with a random center
2. Let D(x) be the distance between x and the centers selected so far.

Choose x to be the next center with probability proportional to D(x)a.

where:

a = 0: Random initialization
a = 2: K-Means++
...

a = ∞ : FFT

Improving K-Means Clustering: K-Means++

How to select centroids using this method?

from numpy.random import randint

r = randint(15)

K-Means++

Improving K-Means Clustering: K-Means++

Clustering Algorithms

K-Means++ is the standard clustering algorithm, with many advantages, including
speed of convergence. However, there are many others to choose from, and each
has advantages and disadvantages. Choosing the appropriate method starts with
exploratory data analysis.

Hierarchical Clustering

Another framework for clustering, essentially different from K-Means and its
variants, is Hierarchical Clustering, which has two flavors:

Divisive:
1. Start with all points in one cluster;
2. At each step, split until every point is

in its own cluster

Agglomerative Clustering Algorithm:
1. Start with each point in its own cluster;
2. Compute the distance between all pairs of clusters;
3. Merge the two closest clusters;
4. Repeat 3 & 4 until only one cluster remains.

How do we define distance between clusters?

Each answer will give us a slightly different Hierarchical Clustering algorithm....

Hierarchical Clustering
Agglomerative Clustering Algorithm:
1. Start with each point in its own cluster;
2. Compute the distance between all pairs of clusters;
3. Merge the two closest clusters;
4. Repeat 3 & 4 until only one cluster remains.

Distance calculation:

1. Single-Link Distance: Minimum distance between a point in one and a point in
the other cluster:

Hierarchical Clustering

Hierarchical Clustering
Agglomerative Clustering Algorithm:
1. Start with each point in its own cluster;
2. Compute the distance between all pairs of clusters;
3. Merge the two closest clusters;
4. Repeat 3 & 4 until only one cluster remains.

Distance calculation:

2. Complete-Link Distance: Maximum distance between a point in one and a point
in the other cluster:

Hierarchical Clustering
Agglomerative Clustering Algorithm:
1. Start with each point in its own cluster;
2. Compute the distance between all pairs of clusters;
3. Merge the two closest clusters;
4. Repeat 3 & 4 until only one cluster remains.

Distance calculation:

3. Average-Link Distance: Average distance between a point in one and a point in
the other cluster:

Less susceptible to noise and outliers, but tends to be biased toward globular
clusters....

Also: Centroid Distance, Ward's Distances, etc., etc.

Hierarchical Clustering
Agglomerative Clustering Algorithm:
1. Start with each point in its own cluster;
2. Compute the distance between all pairs of clusters;
3. Merge the two closest clusters;
4. Repeat 3 & 4 until only one cluster remains.

Finding the threshold with which to cut the dendrogram requires exploration and
tuning. But in general hierarchical clustering is used to expose a hierarchy in the
data (ex: finding/defining species via DNA similarity).

Dimensionality Reduction: PCA
A third kind of unsupervised learning is Principle Components Analysis: reducing
the number of dimensions in a data set (typically down to 2 dimensions) whilst
preserving the most important characteristics of the data.

By "most important," we mean those parts of the data which show the most
differences (e.g., variance).

Let's consider a small example to see the basic algorithm. Consider the points
below, which live in R2:

Dimensionality Reduction: PCA
These points are in two dimensions, but most of the variation (most of the
meaning) in the data is in 1 dimension, i.e., along a line (not exactly a dimension):

Dimensionality Reduction: PCA
The first step in PCA is to shift the data so its centroid (mean value point) is at the
origin:

Dimensionality Reduction: PCA
Next, we analyze the data using eigenvectors (formally, Singular-Value
Decomposition) to find the line through the data in the direction with the highest
variance, and then project the data onto that line (all linear algebra stuff!):

Dimensionality Reduction: PCA
This can be done any time we want to visualize a complex set of data, say in 2
dimensions. Here is an example:

This data set has 9409 dimensions!
Here is the PCA reduction to two
dimensions, with the three clusters
shown:

